GALer

GALer

] COLLABORATORS
TITLE :
GALer
ACTION NAME DATE SIGNATURE
WRITTEN BY February 12, 2023
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

GALer iii

Contents

1 GALer 1
L1 GALer o 1
1.2 Whatis GALEr e e e 2
1.3 Shareware e e e e 3
1.4 TImportant!!! o e 3
1.5 HIStory . . . o e e 4
1.6 Thanks. e 5
1.7 System Requirements 5
1.8 What are GALS? e e 6
1.9 The Intern Structure of GALS e e 7
1.10 The GAL16V8 and GAL20VE e e 7
1.11 The GAL22VI0 o o e e e e 11
1.12 The GAL20RAI0 o e e e 12
1.13 The Software e 13
1.14 Source File e e 13
1.15 Installation 0 e e e e e e e 18
1.16 Allgemeines zur Bedienung L e 18
LI7 MENUS o o e e e e e e e e e e 18
118 Project o o 20
1.19 Project o o e 20
120 Project o o e e e e 20
121 Project o o e 20
1.22 GAL-TYPE .« o o o o e e e 20
123 GAL-TYPE . . . o o o o e e 21
1.24 GAL 21
125 GAL . . . o 21
1.26 GAL 21
127 GAL . . o o 21
128 GAL e 22
1.29 GAL . . . o 22

GALer iv
1.30 GAL . . . o 22
131 GAL . . o o 22
1.32 GAL-Assembler e e e e 23
1.33 GAL-Disassembler o e e e e 23
1.34 GAL-Disassembler e e 23
1.35 GAL-Disassembler e e e 23
1.36 GAL-Disassembler e e 23
1.37 GAL-Disassembler e e 24
1.38 GAL-Disassembler e e e 24
1.39 Tools o e e e 24
1.40 Tools o o e e e 25
141 Tools o 25
142 Tools . . . o o o e 25
LA3 Tools o e e 25
1.44 Tools o o e e 25
LA5 Tools o e 26
146 Assembler L L e e 26
1.47 How to Program GALS e 27
1.48 How to Test Programmed GALS 28
1.49 Optimizer o e e e e 29
1.50 JEDECFile e e 30
1.51 Examples oo e e 32
1.52 GALIOVE . . . e 32
1.53 GAL22VI0 o e e 35
1.54 GAL20RAIO o e 37
1.55 Error Messages o o v it e e e e e e e e e e 39
1.56 Error MeSSages o o v v it e e e e e e e e e e 40
1.57 Error MeSSages v v v v v i e e e e e e e e e e e e e e e e e e 44
1.58 Error Messages o i i e e e e 46
1.59 Programming GALS e 47
1.60 Circuit Description o e e e e e e e e e 50
1.61 ConStruction o e e e e e e e e e 52
1.62 Keywords of the Source File e 54
1.63 Listof Parts 54
1.64 Further Reading e e e 56
1.65 Index o o e e 56

GALer

1/61

Chapter 1

GALer

1.1 GAlLer

Common

GALer V2.1

Copyright © 1991/96 by Christian Habermann
All Rights Reserved

Table of Contents

Things

What is GALer
Shareware
IMPORTANT

System Requirements

Thanks
Chapter I BASICS

I.1

What are GALs?
I.2

The Intern Structure of GALs
I.2.1

The GAL16V8 and GAL20V8
I.2.2

The GAL22V10
I.2.3

The GAL20RA10
Chapter II
THE SOFTWARE
IT.1
Source File
IT.2 The Program GALer

GALer 2/ 61

IT.2.1
Installation

I1.2.2
How to Use GALer

IT.2.3
Menus

IT1.2.4
Assembler

IT.2.5
How to Program GALs

IT1.2.6
How to Test Programmed GALs

I1.2.7
Optimizer

I1.3
JEDEC File

IT.4
Examples

IT.4.1
GAL16V8

I1.4.2
GAL22V10

I71.4.3
GAL20RA10

IT.5
Error Messages

IT.5.1
Assembler

ITI.5.2
JEDEC File

I1.5.3
Reassembler

Chapter III THE HARDWARE

IIT.1
Programming GALs

I11.2
Circuit Description

ITI.3
Construction

Appendix

Keywords of the Source File
List of Parts

Further Reading

History

Index

1.2 What is GALer

GALer 3 /61
GALer is a GAL programming device with relevant driver software.
So the project GALer consists of two components, a software and a
hardware.
1.3 Shareware
GALer is SHAREWARE. If you use this program and/or the hardware, please
send me 20 DM or 15 US $. The circuit diagram for the hardware and the
component mounting diagram for the PCB will be sent to you on receipt of
the shareware donation.
Send money by postal money order or cash, no checks please! If you send
me a disk you will be sent the next update of GALer when it becomes
available.
My address is: Christian Habermann

Asamstr. 17

85356 Freising

Germany

EMail: Christian.Habermann@t-online.de
The distribution of GALer on PD-disks or through the networks is
permitted, as long as no profit is made from it, and that the included
files remain unaltered, and are distributed in their entirety. If you build
the GAL-prommer you are allowed to sell this one, to the price of the parts.
It is not allowed to sell this product in commercial way. The circuit
diagram must only be distributed privately and free of charge.
1.4 Important!!!

WARNING!!! The "GALer" and "GALerTest" programs send data over <

your Amiga’s
parallel port. This means: when you have a printer, digitizer, or
something else attached, it should be switched off or disconnected, since
it is possible that you may damage them.

I CANNOT BE HELD RESPONSIBLE FOR ANY DAMAGE TO YOUR COMPUTER OR PRERIPHERALS.

The "GALer" hardware and software has been running faultlessly on my A3000.
I have tested GALer on A1000, A3000 and A4000 machines. It should run on
all other Amigas too.

The circuit diagram is 100% fault free. With careful construction

there is no reason for anything going awry. Even so the construction should
be carried out by electronics freak (you should at least have soldering
experience, and be able to intelligently read circuit diagrams). More
information about the construction can be found in chapter III.

GALer

4 /61

Note: This manual sparely covers the operational theory of GAL programming.
It is not a substitute for
further reading

If you already have long experience with digital circuitry, and really don’t
care how a GAL is made, or how it works internally, then this manual together
with the examples should suffice to intelligently implement your GALs.

1.5 History

Versions:
V1.0: Test version
v1i.1: Intuition interface added
V1.2: cured a few bugs
V1.3: - cured some bugs in the GAL assembler. /name.E is no longer allowed.
— The pin names of the last assembled files can be assigned to the
indicated GAL.
vli.4: - Kick 2.0
- new Intuition environment
- support of A- and B-type GALs
- new format of JEDEC files
- new functions: verify of programmed GALs
test whether security fuse is set or not
compare GALs
optimizer for Boolean equations
reassembler
— IMPORTANT CHANGE!!!:
/' in pin declaration is now considered in the equations
V1.41 - support of locale.library and gadtools.library
- reqg.library replaced by regtools.library, reqgtools.library is
copyright by Nico Francois
- Help available
V1.5 - support of GAL22V10 and GAL20RAI1O0
- needs WB 2.0 or later
- detects A- and B-type 16V8 and 20V8 GALs automatically
- use of #, &, ! for OR, AND and NOT is now possible
- shortcuts changed
- external editor can be called from GALer
— comments in the source files can now be introduced by a ’;’
Vl.5a - this version is equal to version 1.5
but now there is a layout included (see directory "Layout")
V1.5b - improved timing, therefore the access time is slowed down

significantly

GALer

5/61

V1.5c

V2.0

v2.1

1.6 Thanks

bug removed, erasing of 22V10 GALs did not work

new GUI (Magic User Interfac, MUI)

bugs in reassembler removed
translation of GAL22V10 JEDEC files in source codes often failed
and the handling of negations in tristate enable equations was
wrong

bug in assembler removed
feedback of GAL22V10 registered outputs was wrong

Optimizer did not work at all in version 2.0 because of a
typing error in the source code (I formated the source new

in version 2.0 and by doing this a mistake occured - SORRY).
Now it seems to be ok again.

Thanks to: - all registerd GALer users
— Thorsten Elle for the PCB
- Frank Stange for beta-testing
— Helmut Hohenwarter for reading the documentation files

— Nico Francgois for the reqtools.library
reqtools.library is (c) by Nico Francgois

- Stefan Stuntz for the Magic User Interface (MUI)
MUI is (c) by Stefan Stuntz (see
System Requirements

)

— the firm Amiga for the great product Amiga

1.7 System Requirements

To use GALer you need an Amiga with at least 512 kByte RAM and
Workbench 2.0 or higher.

Furthermore you need the MagicUserInterface (MUI) which is NOT
included in the GALer package.

Since MUI is Shareware and not Freeware, I’'m obliged to print the
following text:

This application uses

GALer

6/61

MUI - MagicUserInterface
(c) Copyright 1993/94 by Stefan Stuntz
MUI is a system to generate and maintain graphical user interfaces. With
the aid of a preferences program, the user of an application has the
ability to customize the outfit according to his personal taste.
MUI is distributed as shareware. To obtain a complete package containing
lots of examples and more information about registration please look for
a file called "muiXXusr.lha" (XX means the latest wversion number) on

your local bulletin boards or on public domain disks.

If you want to register directly, feel free to send

DM 30.- or USS 20.-
to
Stefan Stuntz
Eduard-Spranger—Strabe 7

80935 Miinchen
GERMANY

1.8 What are GALs?

I.1 What are GALs?
GALs (Generic Array Logic) are programmable logic devices. By appropriate
programming by the user, many standard gate functions can be resolved

into a single GAL chip.

Assuming you need the following logic functions for your circuit:

- AND -Gate with 2 inputs
- OR -Gate with 2 inputs
— NAND-Gate with 2 inputs
- NOR -Gate with 2 inputs

Normally you would need FOUR standard TTL-ICs. These functions can be
replaced with ONE GAL. The main use of GALs is to make digital circuits as
simple as possible, by replacing many standard logic ICs by one or more
GALs.

A GAL is able, with appropriate programming, to replace all the logic
functions, such as for example: AND, OR, XOR, NAND, NOR, inverters,
FlipFlops, decoders (especially address decoders), mutiplexers, counters.
On top of all the GAL is reprogrammable (at least 100 times), so that the
desired logic functions may easily be altered.

GALer 7 /61

1.9 The Intern Structure of GALs

I.2 The Intern Structure of GALs

Up to now there are many kinds of GALs. The most common GALs are the

GAL16V8, GAL20V8 and GAL22V10. These GALs are supported by GALer. Furthermore
GALer supports the GAL20RA10 too. The next sections shows you what’s inside
of such a GAL.

1.10 The GAL16V8 and GAL20V8

I.2.1 The GAL16V8 and GAL20VS8

There are several types of GAL16V8 and GAL20V8 GALs, the standard-, A- and
B-type GAL16V8, GAL20V8. The A- and B-type GALs needs less power and are
faster. But since there is no greate difference between them I will only
talk about the standard GALs GAL16V8 and GAL20V8. When there are any
differences between A-, B- and standard-GALs I will mention this extra.

At first the pin designations:

GAL16VS8
Input or Clock 1| |20 +5V
Input 2| |19 Configurable Output Cell
Input 3] |18 Configurable Output Cell
Input 4| |17 Configurable Output Cell
Input 6 | |15 Configurable Output Cell
Input 71 |14 Configurable Output Cell
Input 8| |13 Configurable Output Cell
Input 9| |12 Configurable Output Cell
GND 10| |11 Input or /OE
GAL20V38
Input or Clock 1| |24 45V

Input 2 |23 Input

Input 3] |22 Configurable Output Cell
Input 4| |21 Configurable Output Cell
Input 5] |20 Configurable Output Cell
Input 6| |19 Configurable Output Cell
Input 71 |18 Configurable Output Cell
Input 8| |17 Configurable Output Cell
Input 9| |16 Configurable Output Cell
Input 10| |15 Configurable Output Cell
Input 11| |14 Input

GND 12 |13 Input or /OE

From the pin designations you can see that the only difference between the
GAL16V8 and GAL20V8 is the number of inputs. The choice of GAL then, 1is

GALer 8 /61

dependant solely on the number of required inputs.

The essential part of every GAL is a logic-matrix. The input pins of the

GAL are connected both inverted and uninverted to the columns of this matrix.
If the GAL hasn’t been programmed the rows and columns are connected to

each other. Every connection between a row and a column represents an

AND gate. If the GAL is programmed the particular connections are erased

so that the wanted logic is programmed. A row is called a product term,
because every column (input) that is still connected to a row represents

an AND gate.

Eight of these rows (product terms) of a GAL16V8 or GAL20V8 are connected
with the so called OLMC (Output Logic Macro Cell). In this OLMC the
product terms are ORed together. The OLMC is a "configurable output cell".

What is a "Configurable Output Cell"?

A GAL16V8 or GAL20V8 contains eight of these configurable output cells. These
output cells may be configured as input, combinational output, tristate output,
or register output.

Combinational Output: This output can be HIGH or LOW.

Tristate Output: This output can take one of three states:
HIGH, LOW, and HIGH IMPEDANCE
This is used if you want to tie two outputs together,
but only one may be active.

Register Output: With this output the result of an equation is not
directly coupled to the output, but connected via
a D-FlipFlop. Only on receipt of a clock pulse, 1is
the signal passed to the output. When /OE is HIGH,
then the output goes HIGH-IMPEDANCE.

Besides the matrix, a GAL16V8, GAL20V8 contains extra bits:
((n) means that these bits are available for each output).

XOR (n) : The result of the digital connection can be negated with this bit.
XOR (n) = 0 : Output is active LOW
XOR (n) = 1 : Output 1is active HIGH

SYN, ACO, AC1l(n):
These bits determine in which mode the GAL works. Mode means, which type
of outputs are used (register, tristate,...). There are three main
operating modes in which the GAL works:

Mode 1: SYN = 1, ACO = 0
ACl(n) = 1 : OLMC as input
ACl(n) = 0 : OLMC as combinational output

Mode 2: SYN = 1, ACO =1
ACl(n) = 1 : tristate output

GALer 9/61

Mode 3: SYN = 0, ACO = 1
ACl(n) = 1 : OLMC as tristate output
ACl(n) = 0 : OLMC as register output

PT0...63: (PT = product term)

These bits indicate whether the rows (product terms) 0...63 in the

GAL’s matrix are valid or not.

PTx = 1: AND-junction in the row x is wvalid.

PTx = 0: AND-junction in the row x is not used (have no effect) on
the output.

(x = between 0 and 63; there are 64 rows in the matrix,

so that each row can be individually activated or deactivated)

All these bits (82 bits) are tied together via the so called Architecture-
Control-Word (ACW). The ACW is described in chapter III.

Signature:
Here are eight bytes for your own use. Normally a short comment or
a version number of the GAL is placed here.

Security fuse: (Security-Bit)
By setting this bit the GAL can be protected from unauthorized copying.
The reading of the logic matrix is no longer possible. Since the rest of
the bits can still be read this protection is not very effective.

Bulk Erase:
By programming this row the whole GAL is erased. Now it is possible to
program the GAL again. A GAL can be reprogrammed about 100 times.

The Operation Modes of a GAL16V8 and GAL20VS8

As already explained the SYN, ACO and ACl (n) bits determine the mode
of the GAL. The pin designations of the GAL are determined by this mode.

GAL16V8:
Mode 1 | Mode 2 | Mode 3 Mode 1 | Mode 2 | Mode 3
| rfFe = = | |
In | In | Clock 1] |20 +5V | +5V | +5V
In | In | In 2| |19 In/C | T* | In/T/R
In | In | In 3| |18 In/C | In/T | In/T/R
In | In | In 4 |17 In/C | In/T | In/T/R
In | In | In 5] |16 C | I/T | In/T/R
In | In | In 6| |15 C | In/T | In/T/R
In | In | In 7| |14 In/C | In/T | In/T/R
In | In | In 8| 113 In/C | In/T | In/T/R
In | In | In 9 112 In/C | T | In/T/R

GALer 10/ 61

GND | GND | GND 10] |11 In | In /OE
GAL20V8:
Mode 1 | Mode 2 | Mode 3 Mode 1 | Mode 2 | Mode 3
| rfr = e | |
In | In | Clock 1] |24 +5V | +5V | +5V
In | In | In 2 |23 In | In | In
In | In | In 3| |22 In/C | T* | In/T/R
In | In | In 4 |21 In/C | In/T | In/T/R
In | In | In 5] |20 In/C | In/T | In/T/R
In | In | In 6| |19 C | In/T | In/T/R
In | In | In 7| |18 C | In/T | In/T/R
In | In | In 8| |17 In/C | In/T | In/T/R
In | In | In 91 |16 In/C | In/T | 1In/T/R
In | In | In 10 |15 In/C | T | In/T/R
In | In | In 11 |14 In | In | In
GND | GND | GND 12 [13 In | In | /OE
Abbreviations:

In : input

C : combinational output without feedback

T : tristate-output

Tx : tristate-output without freedback to the matrix, which means

that this output cannot be configured as input
R : register-output

Clock : pulse for D-FlipFlops; only affects those pins which are
configured as register-output

/OE : output enable (low active): activate the register-outputs
(see I.2)

From the pin designations you can see that pins 15 and 16 of the GALl6VS8

and pins 18 and 19 of GAL20V8 cannot be programmed as inputs when the GAL is
in mode 1. The same hold true for pins 12 and 19 and 15 and 22 for mode 2.
In mode 1, pins 1 and 11 (GAL16V8) and pins 1 and 13 (GAL20V8) are reserved
for Clock and /OE. These pins therefore cannot be used as inputs.

As I told, eight of the rows (product terms) of a GAL16V8 or GAL20V8 are
connected via an OR gate to the OLMC. This means that you can use eight
product terms to define your output. But when using a tristate output, one
row of these eight rows is needed for the tristate control. So you use
only seven product terms for tristate output definitions.

GALer 11/ 61

Here some sentences to the mode, which should make it easier to you to
understand what mode is used:

If you need at least one register output in your GAL, then mode 3 is used.
When you need at least one tristate output and no register output, then the
GAL will be in mode 2. When you need neither a tristate nor a register
output, mode 1 is used.

1.11 The GAL22V10

I.2.2 The GAL22V10

The GAL22V10 is the successor of the GAL16V8 and GAL20V8. This second
generation of GALs are much more flexible and better to program.

At first the pin designations:

GAL22V10
Clock and Input 1] |24 45V

Input 2 | |23 Configurable Output Cell
Input 3] |22 Configurable Output Cell
Input 4| |21 Configurable Output Cell
Input 5] |20 Configurable Output Cell
Input 6| |19 Configurable Output Cell
Input 71 |18 Configurable Output Cell
Input 8| |17 Configurable Output Cell
Input 9| |16 Configurable Output Cell
Input 10| |15 Configurable Output Cell
Input 11| |14 Configurable Output Cell
GND 12 |13 Input

The GAL22V10 has ten OLMCs, whereas the GAL16V8 and GAL20V8 has "only"
eight of them. GAL22V10’s OLMCs are not as complex (and complicated

to understand) as the OLMCs of the 16V8 and 20V8 GALs. But nevertheless
there are less restrictions.

For each OLMC of a GAL22V10 are just two bits which can be programmed,
the SO0- and Sl-bit. The SO0-bit does the same as the XOR-bit of the
GAL16V8 and GAL20V8. It determines whether an output is active high or
active low.
Just for remembrance:

XOR (S0) = 0 : Output is active LOW

XOR (S0) = 1 : Output is active HIGH

The Sl-bit does the same as the ACl-bit of the 16V8/20V8 GALs. It determins
whether the OLMC is used as registered-output or as tristate output.

For each output and for each type of output you can define a tristate enable.
So you can define a tristate enable for registered outputs too. This is
another difference to the 16V8/20V8 GALs, because there you can switch

just all registered outputs or non to high impetance by use of the /OE

pin (operation mode 3).

Pin 1 of the GAL22V10 can be both at the same time a "normal" input and
the clock-input for the registers.

GALer 12 /61

There are two additional signals within this GAL, but they are not connected
to any pin, they are internal signals. These are AR (asynchronous reset) and
SP (synchronous preset). These signals are for the registered outputs which
can be controlled by use of the AR and SP. AR resets the registered outputs
when it becomes true, independent from the clock-signal at pin 1 of the GAL
(asynchronous) . SP sets the registered output when it becomes true and

when a LOW-HIGH transition of the clock is detected (synchronous).

Another feature of the GAL22V10 is that the amount of rows which are
connected to an OLMC is not constant. The number of rows connected to
an OLMC is between 9 and 17 (!).
Here is a table which shows the exactly number of OLMC’s rows:

OLMC at pin number of rows from
the logic-matrix

|
|
____________ b

23 | 9
22 | 11
21 | 13
20 | 15
19 | 17
18 | 17
17 | 15
16 | 13
15 | 11
14 | 9

You have to consider that for each OLMC one row is needed for the
tristate enable again. So you can use 8, 10, 12, 14 or 16 product
terms for the output definition.

1.12 The GAL20RA10

I.2.3 The GAL20RA10
The next and last GAL which I want to indroduce is the GAL20RA10. This

is also a second generation GAL, but this one is a special one. It is
not as universal as a GAL16V8, GAL20V8 or GAL22V10.

Here the pin designations:

GAL20RA10
/PL 1] |24 +5V
Input 2| |23 Configurable Output Cell
Input 3 |22 Configurable Output Cell
Input 4| |21 Configurable Output Cell
Input 5] |20 Configurable Output Cell
Input 6| |19 Configurable Output Cell

Input 7 |18 Configurable Output Cell

GALer

13 /61

Input 8| |17 Configurable Output Cell
Input 9| |16 Configurable Output Cell
Input 10| |15 Configurable Output Cell
Input 11| |14 Configurable Output Cell
GND 12| |13 /OE

The GAL20RA10 provides ten OLMCs. To each OLMC eight rows of the logic
matrix are connected. One row (product term) is needed for tristate

control again. Furthermore there are three product terms needed for

fully asynchronous control of the register set, reset and clock functions.
This means that there are four product terms left for the output definition.
The output enable product term is AND’ed with the input from pin 13 (/OE).
This allowes either a hard wired external control or a product term control,
or a combination of both.

Each OLMC has just one bit which can be programmed, the S0-bit (=XOR). This
bit is for the active polarity control. This means that there is no other
bit to define whether an output should be a registered or a tristated one.
But there is no bit needed to do this: if both is true the product term

of asynchronous reset and the product term of asynchronous preset, then the
register is switched off and the output becomes a "normal" tristate

output.

By use of pin 1, /PL (preload), all registered outputs can be preloaded.
This enhances the functional testability of the programmed GAL.

To preload a register do the following:

1. supply a high to /PL and to /OE (so the registered outputs
become high impedance outputs)

2. impress the desired state on the register output pin
3. pulse low /PL for at least 35ns

After this the registers will be loaded.

1.13 The Software

Chapter II

The Software

In principle you can forget all of chapter I. In principle! What you should
remember is the pin designations of the GAL in the different modes. Thereby
avoiding many unnecessary failures. The determination of the function mode
and the other parameters, which are to be taken into account during the
programming of the GAL, are taken care of by the software.

1.14 Source File

GALer

14 /61

II.1 Source File

First a source file has to be created with a text editor. This source file

must contain the following information:
1. The GAL type (GAL16V8 or GAL20V8)

2. an 8 byte long comment, which will be written into the GAL as the
signature (see I1.2)

3. The pin names - here pin numbers are replaced with names, which is
easier to oversee.

4. The Boolean equations

5. The keyword DESCRIPTION - after this you can place some desired text.
This text generally describes the GAL’s function. That way you can know

years later what the GAL’s intended use was.

Before it’s getting boreing here is a first example (be happy) .
Example 1:
Assuming you need the following gates in your circuit:

— one AND with 3 inputs

— one NAND with 2 Inputs

- one OR with 2 inputs

— one small digital circuit which feeds the outputs from 2 AND gates
to the inputs of one OR gate.

Circuit diagram:
(sorry for the European symbols)

AND: +———— W =A% B % C
A | |
B ————| & |-——— W
C - |
+————+
NAND: +———— /X =D x E
D ———-| |
| & Jo—— X
E - |
+-———+
OR:
et Y=F +G
F—1 |
| >1 |-——= Y
G ———I = |
+-———1
small digital +——t Z =H I+ J * K

circuit: H ——| |

GALer 15/ 61

| & [-———+
I ———| | I
+————+ +———] |
| >1 |-——— 2
+o———1 +——— |
J - | I
| & |-—+
K ——1 |
+————+
Legend:
* : AND - connection
+ : OR - Connection
/ : low active

In order to create the source file we have to determine which type of GAL
will suit our purpose.

For the implementation of the above logic functions, we need a total of 11
inputs and 4 outputs. From chapter I we know (or not?) that the type of GAL
is dependant on the number of needed inputs.

The number of inputs in turn depends on the mode (see

pin designations of the various modes
) . Since neither tristate
nor register outputs are used, the GAL will be in mode 1 after programming.

It therefore follows, the GAL16V8 has 10 inputs and 8 configurable outputs.
Since we only need 4 outputs, we can program the rest of the outputs as inputs,
so that we obtain the total required 11 inputs and 4 outputs.

Therefore GAL16V8 is adequate for our purposes. GAL20V8 can also be used, but
that leaves a lot of unused inputs (WASTE !).

The second thing we need is a signature for the GAL. Remember, it can
be up to 8 characters long. For example "example".

Now we have to define the pins. The pins are named one after the other
from 1 to 20. Pins that are not used should be named "NC" (not connected),
ground with "GND" and +5V with "VCC".

here: B C D E F G H I J GND
K NC NC NC Z Y X W A VCC

that is:
Pin 1 := B Input
Pin 2 :=C Input
Pin 3 :=D Input
Pin 4 :=E Input
Pin 5 :=F Input
Pin 6 := G Input
Pin 7 :=H Input
Pin 8 := 1 Input

GALer

16/ 61

Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin

9 :=J
10 := GND
11 := K
12 := NC
13 := NC
14 := NC
15 = %
16 := Y
17 := X
18 (=W
19 := A
20 := VCC

gHIDOQHEHEODOOQ®
ul

Input

Ground

Input

Not Connected
Not Connected
Not Connected
Combinational
Combinational
Combinational
Combinational
(Configurable
Voltage Supply

GAL16V8

|20 VCC
[19 A
[18 W
[17 X
|16 Y
|15 Z
|14 NC
|13 NC
|12 NC
[11 K

GND 10|

Next come the Boolean equations:

W =
/X =
Y =
7 =

Therewith we
question ari

In line 1 mu

In line 2 mu

B x C
E
G

=i I A =
* 4+ ok *

have all
ses, what

st be the

st be the

I +J x K

the parts requir
format does such

type of GAL. Her

signature. Here

Then follow the pin declaration:

B
K

C D E
NC NC NC

F G H I J
Z Y X W A

Then the Boolean Equations:

W =
/X =
Y =
[

A x B x C
D x E
F + G
H+« I+ J

* K

and the keyword DESCRIPTION.

Comments are introduced by a ’;’.

Output
Output
Output
Output
Output defined as Input)

ed for the source file.
a file have?:

e "GALlev8"

"Example"

GND
VCC

Now the

GALer 17 /61

Now using a text editor you can create your source file, and save it with
the title "example.pld". Don’t forget the extension ".pld".

This is how the file should look:

(#x%x* These characters designate the start and end of the file, please
don’t type it.)

KKK AR KA A AR A AR A AR A A AR A AR A AR A A AR A AR A AR A A AR A A A A A A A A A d Ak kK

GAL16V8 ; this is the GAL type
Example ; this is the signature
B C D E F G H I J GND ; this is the pin declaration

K NC NC NC Z Y X W A VCC

W =A B x C ; here are the pin definitions
/X =D x E

Y =F + G

Z =H I + J x K

DESCRIPTION:

here could be a comment which describes the function
of this GAL

R R e I b b S Sb b I S b S b b b b I S b I S b S b I S S b I Sb b S b b S b b I b b S b S S 3

Negations (’/’) in the pin declaration are considered in the Boolean
equations. This means, 1f you use a '/’ in the pin declaration and
if you use the related pin in a Boolean equation this pin will be
negated.

Example:
A B /C D GND
K L M N VCC
N =C

A B C D GND
K L M N VCC
N /C

How do you obtain from this source file a programmed GAL? For that you
need the program "GALer" which is described in the following sections.

GALer

18 /61

1.15 Installation

II.2.1 Installation

The installation of GALer is very easy, Jjust start the installation
script. Commodore’s installer is used, so there should be no problems.
Just do what your Amiga requests.

If you start GALer for the very first time, please select your hardware
version of GALer by use of the menu "

Project - Hardware Version

n
and save this setting by use of the menu item "

Project - Save config.

n

You can start GALer either from Workbench or CLI.

For informations what GALer needs see
System Requirements

1.16 Allgemeines zur Bedienung

II.2.2 How to Use GALer

The usage 1is easy. For each action corresponding requesters will appear
which informs you what’s going on and what to do.

The most requesters can be confirmed/refused by pressing the
corresponding gadgets or by using the Return/ESC key.

In addition GALer has a online help. So if you want to get help on a
menu item, a gadget group or a window, Jjust move the mouse pointer
over it and press the HELP key.

GALer uses several files which have different extensions like ".pld", ".jed",
".chp", ".pin", ".fus". If you want to load or save such a file GALer will
choose the right extensions automatically. So you don’t have to care about

it. If you don’t enter the postfix, GALer will add it.

1.17 Menus

II.2.3 Menus

Project

GALer

19/ 61

About GALer
Hardware—-Version
Save Config.

Quit
GAL-Type

GAL16V8
GAL20V8
GAL22V10
GAL20RA10

Type—Requester
GAL

Program

Copy

Erase

Compare

Blank test

Set security bit
Test security bit

Write access
GAL-Assembler

Assemble file
GAL-Disassembler

Read signature
Read ACW

GAL-Info

Generate JEDEC file

JEDEC file parameter

Reassembler
Tools

Show pin names

Clear pin names

GALer

20/ 61

1.18 Project

About GALer

1.19 Project

Hardware-Version

1.20 Project

Save config.

1.21 Project

Quit

1.22 GAL-Type

GAL16V8
GAL20V8
GAL22V10
GAL20RA10

GAL-Checker

Select editor

Call editor

Optimizer

Help

Tells you who has done all this code. I can tell
you, I was it.

Here you can select which hardware version of GALer
you have connected to your Amiga. This selection
must be conform with the version of your circuit
diagram. Otherwise GALer will not work correctly

in some cases.

Saves some settings to the file "S:GALer.config".
Starting GALer next time, GALer will read this file
and set your saved settings again.

Quit quits GALer, but ATTENTION! Handle this function
with care: If you use Quit too often, GALer will sell
your Amiga’s CPU.

Are you thinking that I’'m pulling your leg?
Ohhhh no..., really not!!! I never would do this.

Here you can select the type of GAL which should be
read/programmed next time.

GALer 21 /61

1.23 GAL-Type

Type—-Requester Every time when GALer wants to read or program a GAL
GALer will bring up a requester in which you can
select the type of GAL you want to read or program.
This selection overrides the selection in the
GAL16V8, GAL20V8, ... menus.

If you don’t want this behavior of GALer, deselect
the Type-Requester menu. GALer will then not bring up
this requester.

1.24 GAL
Program Program a GAL. This is the most importent <
function of
GALer. After selecting this menu, GALer will bring
up a file requester in which you can select the
JEDEC file
which should be programmed into the GAL.
1.25 GAL
Copy Copy a GAL. You can only copy a GAL if the
security bit
of the source GAL is not set and if the <>
destination GAL
is not programmed.
1.26 GAL
Erase Erase a GAL. If you want to program a GAL the GAL
must be erased. Do this using this function.
1.27 GAL

Compare There are three different types of <
comparison. You
can compare a GAL with several GALs, a GAL with
several
JEDEC files

GALer

22/ 61

or a JEDEC file
with several GALs.

1.28 GAL
Blank test Test whether the GAL is erased or not.
1.29 GAL

Set security bit Set the
security bit
of a GAL. The logic matrix of
such a protected GAL can’t be read out after doing
this.

1.30 GAL

Test security bit Test whether the
security bit
of a GAL is set or not.

1.31 GAL

Write access This function brings up a requester. In this

requester you can select what GALer should do before

or after programming, copying or erasing a GAL.

programming:
- with blank test: before programming a GAL test
whether it is erased or not

- with verify : verify GAL after programming
copying:
— with blank test: test destination GAL whether

it is erased or not

- with verify : verify programmed destination
GAL

erasing:
- with blank test: test after erasing a GAL

GALer

23 /61

whether it is really cleared

or not

1.32 GAL-Assembler

Assemble file Assemble a
source file
(name.pld) and generate
the
JEDEC file
and some special files.

For further information see:

Assembler

1.33 GAL-Disassembler

Read signature Read

signature

of a programmed GAL and print it
on the screen.

1.34 GAL-Disassembler

Read ACW Read the
architecture control word
of a GAL and

print it on the screen.

1.35 GAL-Disassembler

GAL-Info Gives you some informations about your GAL.

1.36 GAL-Disassembler

Generate JEDEC file Read a GAL and make a corresponding

JEDEC file

GALer

24 /61

1.37 GAL-Disassembler

JEDEC file parameter Selecting this menu puts up a requester in
which
you can determine parameters concerning the writing
of

JEDEC files

Security bit: If this is enabled, GALer will write
JEDEC files in which a special flag is set.

Reading this JEDEC file to program a GAL will bring
up a requester in which you can choose to set the
security bit after programming or not.

Fuse-Checksum: If this is enabled, GALer will write
JEDEC files with a checksum calculated over all
fuses. Manually changed fuses (with text editor)
will be detected by GALer and GALer will warn you
that this JEDEC file has been changed when reading
this file next time. You are allowed to change
comments etc. but you are not allowed to change
fuses (0’ and ’"17).

File-Checksum: If this is enabled, GALer will write
JEDEC files with a checksum calculated over all
characters in this file. This means that you are
not allowed to change anything in this file

by using a text editor.

1.38 GAL-Disassembler

Reassembler This function reads a

JEDEC file

and generates then
the original

source file

So you can read a unknown

GAL and get back a source file with the Boolean
equations.

1.39 Tools

Show pin names Prints the pin names of the last assembled source
file on the screen.

GALer 25/61

1.40 Tools
Clear pin names Clears pin names from screen.
1.41 Tools
GAL-Checker There you can check a programmed GAL <>
whether it does
this what you want to do it or not.
Further information see:
How to Test Programmed GALs
1.42 Tools
Select editor Selecting this will open a window in which
you can
choose your favorit editor which is called when you
select the menu item
Call editor
In a string
gadget of this window you can enter the editor and
it’s parameter. %s is thereby replaced by the name
of the last assembled
source file
1.43 Tools

Call editor This function starts the
selected editor
and tries to

load the last assembled source file in it.

1.44 Tools

GALer 26/ 61
Optimizer Optimize Boolean equations.
For further information see:
Optimizer
1.45 Tools
Help Explains how to get help on a specific menu item.

1.46 Assembler

II.2.4 Assembler

In order to program a GAL the
source file
(".pld") must be transposed into a
so called
JEDEC file
This task is assumed by the GAL-Assembler.

The JEDEC file (extension ".jed") is a ASCII file in which all the bits which
can be set in a GAL are listed. The state of the fuses (0 or 1) is mediated by
the GAL-Assembler from the source file.

Besides the JEDEC file, the GAL-Assembler can generate three other files.
These files are for documentation only. GALer do not need them really:

— The Fuse-File (extension ".fus") shows the state of the bits in the
logic matrix.

— The chip diagram (extension ".chp") shows the connection
diagram of the GAL and the

- pin diagram file (extension ".pin") lists all the pins and shows,
whether these are programmed as inputs or outputs.

The files can be read with a text-editor and possibly post-processed.

Selecting the menu
Assemble file
pops up a requester, called
assembler requester. In the assembler requester you can select which
files should be generated by the assembler. Just click on the corresponding
gadget.

Furthermore you can select two other gadgets:

Autosave: This means that all selected files are generated

GALer

27 /61

automatically without bringing up an extra file requester.
The name of the generated files are taken from the
source file name.

Adjust type of GAL: This means that the type of GAL for which the
source file is, is taken over from GALer.
For example: You have set a GAL20V8 in GALer’s menu.
Now you are assembling a source file for a GAL16V8. If the

assembly is successful, GAL16V8 will be set in GALer’s menu.

Selecting the ’'Continue’ gadget of the assembler requester will pop up a
file requester. Now you have to choose your source file. After this the
GAL assembler will start assembling. If GALer detects no errors, further

file requesters will pop up in which you have to select where to store
the generated files.

1.47 How to Program GALs

IT.2.5 How to Program GALs

After the GAL-Assembler has created the
JEDEC file
from the
source file
14
the GAL can be programmed using this JEDEC file. To initiate the
programming of the GAL, simply select
Program
and give the JEDEC file
name. As soon as the GAL is programmed, a requester pops up, and tells
you the GAL is programmed, and it is OK to remove the GAL from the
programmer’s socket.

The steps in programming a GAL:

1. With a text editor create the source file and save this
file as "name.pld" (add the extension .pld!)

2. Assemble the source file. As a result of this you’ll get
a JEDEC file ("name. jed").

3. Select the GAL type
4. Insert the GAL in the programmer’s socket

5. Perform the
Blank test
to verify that the GAL is empty.
When the GAL is not empty, then you must first erase the GAL
before it can be programmed, use therefore the function
Erase

GALer 28/ 61

6. Initiate programming by selecting
Program

7. Take the GAL out of the programmer’s socket, - DONE !

1.48 How to Test Programmed GALs

IT.2.6 How to Test Programmed GALs

Once the GAL has been programmed, the question remains, "does it work the
way you envisaged it?". Answering this question is the purpose of the
GAL-Checker.

In order to verify the GAL’s functions, you must of course first plug
the GAL into the programmer’s socket, and select the correct GAL-type.
Now you can select the menu item GAL-Checker.

In the middle of the screen you’ll see a symbolic GAL displayed. In this
GAL, you’ll see a number of "I’s and "0O’s. The ’'I’ stands for Input and
the "0’ for Output.

The "0’ is a gadget. By clicking on the 0O’ it turns into an I’ and
clicking on it again it becomes an 'O’ again. In other words, you can
determine if this pin is to be used as an input or an output.

If a pin is an input, then you can select from another gadget if the pin
is to be in a "High" (’H’) or in a "Low" ('L’) state. An output can
assume three states: ’"H’ (High), ’'L’" (Low) and~’Z’ (high impedance).

The current state is displayed near the corresponding pin.

If you’re using the GAL from the

above example

, pin 19
must be defined as an input (="A") by clicking on the 0’ (the one at pin 19),
since this pin was defined as an input during programming in the above
example.

The inputs of the AND gate are: pin 19 (="A"), pin 1 (="B"), pin 2 (="C").
The output is pin 18 (="W").

If you now set the inputs of the AND gate HIGH (by clicking on the gadgets),
the output (=pin 18) should also go HIGH. 1If it doesn’t work or if the output
also goes high with other combinations of input levels, then the fault is
probably in the source file. The error should be corrected in the source file.
The GAL must then be erased and reprogrammed (a GAL can be erased and
reprogrammed at least a hundred times). In this manner the whole GAL can

be fully tested, and if no errors are detected, it can be used in your circuit.

GALer

29/ 61

1.49 Optimizer

IT.2.7 Optimizer

Boolean equations can be simplified very often, but for human beings
it is a hard way to do. A computer can do this much faster (in most
times) .

The Optimizer of GALer tries to optimize Boolean equations by use of
the Quine-McCluskey algorithm. How this algorithm works can be read
in many books which deal with Boolean mathamatics, so it’s not
described here. I Jjust will described the usage of the Optimizer.

Hm, well, the usage of the Optimizer:

Just select the menu
Optimizer
to start GALer’s Optimizer.
After this a file requester pops up. Now you have to select the

source file

which equations you want to be optimized.
After successfully loading this source file GALer starts to optimize
the equations.

GALer displays the original equation and the optimized one. If you
are happy with the result of the optimization you should select the
gadget ’‘use it’. Then the original equation is replaced by the
optimized equation in your loaded source file.

If you don’t like the result of the optimization, you should select the

gadget ’"reject’. Then the original equation is not replaced.

After trying to optimize all equations GALer will pop up a file requester
again. Now you have to select a file name of your optimized source file.

Please don’t use the file name of the original source file for the

optimized source file. Give the new file a new name, Jjust like name_opt.pld

instead of name.pld.

Example of optimization:
Original Boolean equation:
X = /Ax/C + Ax/C + Cx/D + /Bx/C + /AxCxD + Bx/D
By GALer optimized Boolean equation:
X =/C+ /D + /A
Both equations are equal, but the second one is much easier to read.

Not all equations can be simplified. It could be that a "optimized"
equation is more complicate than the original one. Just try it.

GALer 30/ 61

1.50 JEDEC File

IT.3 JEDEC File

JEDEC means (J)oint (E)lectron (D)evice (E)nineering (C)ouncil.
This file is a ASCII file in which every bit which can be set in a
GAL is listed. The JEDEC file has the extension ".jed" and it’s
generated by the GAL-Assembler.

The JEDEC file can start with any text until there is a asterisk (x).
The first ’'x’ introduces the command field. The command field starts
with the first "+’ and ends at the file end.

Within the command field are... (now be astonished) commands! A command
is introduced by one character and it ends with a ’*’ character.

All commands are optional. Not every command must be in a JEDEC file.
The

GAL-Assembler
normaly uses: L, F and G commands (see below)

Possible commands are:

N: This introduces a comment.

Example: N this is a comment =*
| \ |
command any text end of command

F: You don’t have to list all states of the fuses in the GAL. If you don’t
list all fuses GALer must know what the state of the missed fuses is.

FO *: not listed fuses are set to O
Fl x: not listed fuses are set to 1

G: Security Fuse
GO x: don’t set the security fuse after programming the GAL

Gl *: ask user (you) whether to set the security fuse after
programming the GAL or not

L: L defines the address of a fuse and what the state of the fuse
should be.

Example: L0000 10110111111111111111111111011111 =«

GALer 31/61

this means: set fuse at address 0 to 1
set fuse at address 1 to O
set fuse at address 2 to 1

possible addresses are:

GAL16V8, GA1l6V8A, GAL16V8B:
0000-2047: matrix of fuses (AND-array)
2048-2055: XOR bits
2056-2119: signature
2120-2127: AC1 bits
2128-2191: product term disable bits
2192 : SYN bit
2193 : ACO bit

GAL20V8, GAL20V8A, GAL20V8B:
0000-2559: matrix of fuses (AND-array)
2560-2567: XOR bits
2568-2631: signature
2632-2639: AC1l bits
2640-2703: product term disable bits

2704 : SYN bit
2705 : ACO bit
GAL22V10

0000-5807: matrix of fuses (AND-array)
5808-5827: S0/Sl-bits of the OLMCs
5828-5891: signature

GAL20RA10
0000-3199: matrix of fuses (AND-array)
3200-3209: SO0-bits of the OLMCs
3210-3273: signature

QF: Defines how many fuses in the JEDEC file are. A GAL16V8 has
2194 fuses and a GAL20V8 has 2706 fuses. Now GALer can
identify for which type of GAL this JEDEC file is.

Example: QF2194 =«

C: C is followed by a 16 bit hex number which is the fuse checksum of
the JEDEC file (see description of menu ’'JEDEC file parameter’).

Example: C6402 =

<STX>, <ETX>: These are control characters.
<STX>: 0x02 = CTRL-B
<ETX>: 0x03 = CTRL-C

GALer

32/61

Your text editor displays this characters
<STX> 2
<ETX>
<STX> defines the start of the JEDEC file

?

JEDEC file. <ETX> is followed by the file
of menu ’"JEDEC file-parameter’). The file
number.

V: V introduces a test vector.
interprets this command as a N command
1.51 Examples

IT.4 Examples

In the next few sections I will show you some examples about GALs,

file format etc.

1.52 GAL16V8

IT.4.1 GALl6VS8

GALer 1.4 does not support this.
(comment) .

in this way:

and <ETX> the end of the
checksum (see description
checksum is a 16 bit hex

GALer

the source

At first I want to show an example with a tristate output.

(sorry again for the European symbols)

/B e +

I\

I\
B ——————- |

I/

I/

vCe
|

to———t I\
C —————- | | A\

| >1 |——————————— | -
D —=————~- L= I/

to———t I/

+————+

GALer 33/61
I & |-—=—- +
e | | |
-+ |
[\
[\
G ———————————— | +o—————— Y3
|/
|/
Y1l should only be in the "B" state, when "A" = LOW. Y2 should always be
active (either HIGH or LOW - depending on "B" and "C"). This corresponds
to a combinational output. Y3 should only be active if "D" and "E" = HIGH.
GAL16VS8
A 1| |20 VCC
B 2] [19 Y1
c 3] [18 Y2
D 4] [17 Y3
E 5] |16 NC
F 6] |15 NC
G 7] |14 NC
NC 8] |13 NC
NC 9] |12 NC
GND 10| |11 NC

In the source file, tristate outputs are designated with a ".T". The

tristate control is followed with an ".E". If the tristate control
is absent then the normal free switching is assumed (=VCC). Tristate
control = GND means high impedance.

NOTE: With tristate outputs you can only have seven product terms in
your equation (all other output formats have a maximum of eight).

In the tristate control you can only have ONE product term (no OR)
in your equation.

The source file looks like this:

R I R e b b b b b b b b b S S dh b e b I b b b b Sh b b b S S A 2 b b b b b (b Ib dh Sb S i 2 2 b b b b
GAL16VS8
ex.2

A B C D E F G NC NC GND
NC NC NC NC NC NC Y3 Y2 Y1 VCC

Y1.T = B
Y2.T = C + D

Y3.T

/G

Y1.E

/A

GALer 34 /61

Y3.E = E x F

DESCRIPTION

KKK KRR KA AR A AR A AR A A A A A I A A I A A A A A A A A A I A A I A A A A AR A AR A A A Ak, K

In the last GALl6oV8-example we will deal with register outputs. We will
program a 4-bit-counter.

First the pin layout:

GAL16VS8

(Input) Clock 1] |20 VCC

(Input) DO 2] [19 QO (Output)
(Input) D1 3| |18 Q1 (Output)
(Input) D2 4] [17 Q2 (Output)
(Input) D3 5] |16 Q3 (Output)
(Input) Set 0] |15 NC (not used)
(Input) Clear 7| |14 NC (not used)
(Input) NC 8] |13 NC (not used)
(Input) NC 9] |12 NC (not used)

GND 10| |11 /OE (Input)

Since register output sets the GAL in mode 3, this means that pins 1
and 11 are reserved for Clock and /OE. When /OE is HIGH, all register
outputs (Q0-Q3) go to "high impedance" (=Z).

When LOW-HIGH transition pulse is presented at the clock input, then
the counter will be incremented.

When Clear = HIGH and a (LOW-HIGH) clock transition occurs,
the outputs are cleared.

The inputs D0-D3 can be used to preset the counter. While Set = HIGH
and a Clock pulse the values in D0-D3 are transferred to Q0-Q3.
In the source file register outputs are designated with a ".R".

KKK AR KR A AR A AR A AR KA AR A AR A AR A AR A AR A A AR A AR A A A A A A A A A AR Ak kK

GAL16VS8 4-Bit-Counter
Counter
Clock DO D1 D2 D3 Set Clear NC NC GND

/OE NC NC NC NC Q3 Q2 Q1 Q0 VCC

GALer 35/61
Q0.R = /Clear Set = DO

+ /Clear * /Set x /QO
Ql.R = /Clear * Set = D1

+ /Clear /Set = /Q1 = QO

+ /Clear *= /Set » Q1 /Q0
Q2.R = /Clear * Set = D2

+ /Clear * /Set * Q2 /01

+ /Clear * /Set x Q2 /Q0

+ /Clear * /Set x /Q2 Q1 = QO
Q03.R = /Clear * Set = D3

+ /Clear * /Set x* Q3 x /Q2

+ /Clear % /Set » Q3 * /Q1

+ /Clear * /Set = Q3 * /QO

+ /Clear * /Set * /Q3 * Q2 * Q1 = QO
DESCRIPTION

KKK AR KR A AR A AR A AR KA AR A AR A AR A AR AR AR A AR A A AR A A AR AR A A ARk kK

1.53 GAL22V10

IT.4.2 GAL22V10

The next circuit can’t be realized with a GAL16V8 or GAL20VS8.

The reason

for this is that there are different tristate controls for the register

outputs.
register outp

uts,

Enable2

to——
| |
+-——|D |
F——t
o
> Ql
| |
ID |
t-———
Fo——
| |
& |
T |

(output enable)

A GAL16V8 and GAL20V8 has only one tristate control for all
this is the /OE

pin in mode 3.

GALer

36 /61

fo———t |
D ———| | |
\ | \
E ————] >1 |-———— Ommmm e Y4
= |
F o |
ot

Futhermore all register outputs should be reseted asynchronously
when the inputs F and AsyncRe are high and they should be preseted
synchronously when the input SyncPre is high.

(To keep the circuit diagram as simple as possible the inputs
AsyncRe and SyncPre are not drawn in it.)

Don’t think about what the function of this circuit is - there is non.
It is just an example.

Well, and this is one of many possible pin designations:

GAL22V10
Clock 1| |24 +5V

A 2| |23 Y1

B 3| |22 Y2

C 4| [21 Y3

D 5] |20 Y4
E 6] |19 Enablel
F 7| |18 Enable2

NC 8] |17 NC

NC 9] |16 NC

NC 10| |15 NC
NC 11| |14 AsyncRe
GND 12| |13 SyncPre

The only thing which you have to keep in mind here is that the clock
signal for the register outputs must be at pin 1 and that the outputs
must be at OLMC pins (pin 14-23).

To define the asynchronous reset and the synchronous preset for the register
outputs the GAL assembler offers you the keywords AR (asynchronous reset) and
SP (synchronous preset). Since AR and SP are keywords it is not allowed to
use them as pin names when a GAL22V10 is used.

The source file of this example looks like this:

Kok ok ko kK kK kK ok Kk Kk Kk Rk ok ok Kk Kk kK kK ok Kk Kk Kk Rk Kk ko kK kK kK ok Kk Kk
GAL22V10
22V10

Clock A B C D E F NC NC NC NC GND
SyncPre AsyncRe NC NC NC Enable2 Enablel Y4 Y3 Y2 Y1 VCC

GALer 37 /61
YI.R = A x B ; Y1 is a registered output => .R
Y1.E = Enablel
Y2.R = C
Y2.E = Enable2 x Y4 ; Attention: there is a feedback of Y4
; (Y4 is defined as output but it’s
; used as input again)
Y3 = Enable2 x Y4 ; there is a feedback again
Y4 =D+ E + F
AR = F x AsyncRe ; define asynchronous reset
SP = SyncPre ; define synchronous preset
DESCRIPTION

KKK AR KA A AR A AR A AR KA A AR A AR A AR A AR A AR A AR A A AR A A A A A A A A ARk kK

Instead of Y3 = Enable2 x Y4
Y3 = Enable2+D + Enable2+E

But using a feedback is much
equation. Another reason for

you could also write:
+ Enable2«F.

more comfortable than using this long
using a feedback is for example the

tristate control of Y2. In tristate controls there is Jjust one
product term allowed, this means no ORs.

1.54 GAL20RA10

IT.4.3 GAL20RAILO

The next example can be realized only with a GAL20RA1O0.

is that each register output

control. But GAL16V8, GAL20V8 and GAL22V10 offers just one clock input
for all registers and GAL16V8 and GAL20V8 offers just one tristate enable

for all registers.

needs it’s own clock input and tristate

Enablel ———————————— +
Fm———t |
ResetAl ————————- | \ |
| & |-——————— + |
ResetBl —-———————-— | \ | I\ |
=t tm—— + I\

Clockl —===——————————————- |> R Q|—————- [S Y1
| | |/
Dl ———o——————————————— ID S | |/

The reason for this

GALer

38/ 61

Set ——+-—-o0——————————————— +
I
| |
| | >1 |- ——— Y2
O————= =
| A
\ to——= + I\
Clock2 - ——t+————————-——-"--—- | > Ql-————- | +o—————- Y3
\ | \ |/
D2 ———+-——0———————————— |D \ | /|
o tommm + |
Enable2 —-——4——+-———"—"—""""""""""""""—"—"—"—"—"———— o
I |
I |
[i \o
I+ \ I\
\ | & |Jo———————————————— [Y4
o | | |/
Fomm—t 1/
Don’t think about what the function of this circuit is - there is non again.

It is just an example again.

This is one of many possible pin designations:

GAL20RA10
/PL 1] |24 +5V
Set 2| |23 Y1
Enablel 3| |22 Y2
Enable?2 4| |21 Y3
Clockl 5] |20 Y4
Clock2 6] |19 D1
NC 7| |18 D2
NC 8] |17 ResetAl
NC 9| |16 ResetBl
NC 10| |15 NC
NC 11| |14 NC
GND 12| |13 /OE

Pin 1 and 13 are reserved for /PL (preload) and /OE (output enable), they
can’t be used for your own. Since Y1l to Y4 are outputs they must be at OLMC
pins.

When using a GAL20RA10 the GAL assembler provides three additonal suffixes:
.CLK, .ARST and .APRST.

.CLK defines the clock signal for the corresponding register output.
You have to define such a clock signal for EACH register output!

.ARST (asynchronous reset) and .APRST (asynchronous preset) are
optinal, you need not to define them for each register output.

GALer

39/61

For .CLK, .ARST and .APRST is only one product term allowed. For the
definition of the output function are four product terms allowed.

Please keep this in mind: when both is true the asynchnonous reset and
the synchronous preset the register is swichted off and the output becomes
to a "normal" tristate output (see section

The GAL20RA10

) .
So the type of the output can be changed "on the fly".

This is source file for this example:
R IR b b b b b b S b b 2 b b I S b e dh b Sh b b b b 2R b b Sh Sh b SR b 2h Sh b b Sh b 2h Sh b 2h Sh b b ah 4
GAL20RA10

20RA10

/PL Set Enablel Enable2 Clockl Clock2 NC NC NC NC NC GND

/OE NC NC ResetBl ResetAl D2 D1 Y4 Y3 Y2 Y1 VCC

Y1.R = D1 ; define register output

Y1.E = Enablel ; define tristate control
Y1l.CLK = Clockl ; define clock for the register
Y1.ARST = ResetAl * ResetBl ; define async. reset

Y1.APRST = Set ; define async. preset

Y2 = Set + D1 ; Y2 is a "normal" output

/Y3.R = D2 ; Y3 is active low and a reg. output
Y3.E = Enable2

Y3.CLK = Clock2

Y4.T = /D1 + /D2 ; Y4 is a tristate output

Y4.E = /Enable2

DESCRIPTION

kA hhhkhhhkhhhkrhdkrhhk bk hhkrhhkrhhk Ak hkhk kA hhkhkhhkhkhhkhkrhhkrhkxkhk*x*

1.55 Error Messages

IT.5 Error Messages

In this section I want to describe all possible error messages which
GALer can create.

GALer 40/ 61

1.56 Error Messages

II.5.1 Assembler

"Line 1: type of GAL expected"
The first line of your source file must define for what type of GAL
this source file is. So the first line must contain one of the
following keywords: GAL16V8, GAL20V8, GAL16V8A, GAL20V8A

"unexpected end of file"
Normaly this error occurs when there is no DESCRIPTION keyword
at the end of your Boolean equations.

"pin name expected after ' /’'"
A '/’ must be followed by a pin name. If there is a '/’ but no pin name
this error will occur.

"max. length of pin name is 8 characters"”
Pin names are not allowed to be longer than 8 characters.

"illegal character in pin declaration"
In a pin name is a character which is not allowed to use. Possible
characters are: a..z, A..Z, 0..9, /

"illegal VCC/GND assignment"
VCC and GND are keywords. It’s not allowed to use these words for
other pins. Use it only for the pins VCC and GND.

"pn declaration: expected VCC at VCC pin"
The pin VCC must have the name VCC.

"pin declaration: expected GND at GND pin"
The pin GND must have the name GND.

"pin name defined twice"
In the pin declaration a pin name is used multiple.

"illegal use of ' /'"
Negations (’/’) must be followed by a pin name.

"unknown pin name"
Within a Boolean equation is a undefined pin name.

"NC (Not Connected) is not allowed in logic equations"
NC is a keyword for unused pins. So don’t use this in your

GALer

41/61

Boolean equations.

"unknown suffix found"
A ’.’" must be followed by a T, E, R, CLK, ARST or APRST. This defines

wr _rs

expected"
A ’=’ is expected but not found (what else should I say).

"this pin can’t be used as output"
You have tried to define a pin as output which can’t be used as output.

"same pin is defined multible as output"
It’s easier to show an example:

This brings up this error message.

"before using .E, the output must be defined"
You have defined a Boolean equation for tristate enable but there
was no Boolean equation for the trisate output.
The order must be:
name.T =
name.E =

Possibly you have done:
name.E =
name.T = ...

this is wrong!

"GAL22V10: AR and SP is not allowed as pinname"
When using a GAL22V10 AR and SP are keywords for the asynchronous reset
and synchronous preset. So AR and SP is not allowed to be used as pin
names.

".E, .CLK, .ARST and .APRST is not allowed to be negated”
The definitions for tristate control,... can’t be negated.

"mode 2: pins 12, 19 can’t be used as input"
The GAL would be in mode 2. In this mode you can’t define the pins
12 and 19 as input pins. These pins do not have a feedback too. This
means that the following equation is not allowed.

a := pin 19

b := pin 4

y = pin 17

a=>, a is output, b is input
y =axb y 1s output

a is used as input, this is not allowed in mode 2

GALer 42 / 61

because there is on feedback

"mode 2: pins 15, 22 can’t be used as input"
The GAL would be in mode 2. In this mode you can’t define the pins
15 and 22 as input pins. These pins do not have a feedback too. This
means that the following eqauation is not allowed.

a := pin 22
:= pin 4
y = pin 17

o
Il

a=>, a is output, b is input
y = a *x b y 1s output
a is used as input, this is not allowed in mode 2

"tristate control is defined twice"
Example: name.E = A % B
name.E = C
this is not allowed!

"GAL16V8/20V8: tri. control for reg. output is not allowed"
When using a GAL16V8/20V8 it is not possible to define a tristate
control for registered outputs.

"tristate control without previous ’.T’"
There is a tristate control for a combinational output.

Wrong: name
name.kE =

right: name.T =
name.kE =

"use GND, VCC instead of /VCC, /GND"
I think there is nothing to explain.

"mode 3: pins 1,11 are reservated for ’"Clock’ and ’'/OE’"
Using register outputs causes mode 3 for the GAL. In this mode the
pins 1 and 11 of a GAL16V8 can’t be used by your own. These pins are
reserved for Clock and /OE.

"mode 3: pins 1,13 are reservated for ’"Clock’ and ’'/OE’"
Using register outputs causes mode 3 for the GAL. In this mode the
pins 1 and 13 of a GAL20V8 can’t be used by your own. These pins are
reserved for Clock and /OE.

"use of VCC and GND is not allowed in equations”
Expressions like "X = A x VCC" are not allowed (and not necassary).

"tristate control: only one product term allowed (no OR)"

GALer 43 /61

In Boolean equations for tristate controls only one product
term can be used. This means no ORs in your name.E=... equation.

"too many product terms"
In this definition are too many product terms.

"use of AR and SP is not allowed in equations"
AR and SP are keywords which can’t be used in output definitions.

"negation of AR and SP is not allowed"
AR and SP definitions can’t be negated.

"no equations found"
Sorry, but there are no Boolean equations in your source file. So GALer
does not know what to do with your source file.

".CLK is not allowed when this type of GAL is used"
A clock definition is only allowed when a GAL20RA10 is used.

" ARST is not allowed when this type of GAL is used"
A .ARST definition is only allowed when a GAL20RA10 is used.

.APRST 1is not allowed when this type of GAL is used
A .ARPST definition is only allowed when a GAL20RA10 is used.

"GAL20RA10: pin 1 can’t be used in equations"
Pin 1 of the GAL20RA10 is reserved for the preloading /PL.

"GAL20RA10: pin 13 can’t be used in equations"
Pin 13 of the GAL20RA10 is reserved for the output enable /OE.

"AR, SP: no suffix allowed"
It’s not allowed to add a suffix to AR, SP definitions.

"AR or SP is defined twice"
A AR or SP definition is defined twice.

"missing clock definition (.CLK) of registered output"
When using a GAL20RA10 all registered outputs must get a clock
definition.

"before using .CLK, the output must be defined"
At first you have to define the registered output by using .R before
you can define the clock for this output.

GALer

44/ 61

"before using .ARST, the output must be defined"
At first you have to define the registered output by using .R before
you can define the asynchronous reset.

"before using .APRST the output must be defined"
At first you have to define the registered output by using .R before
you can define the asynchronous preset.

"several .CLK definitions for the same output found"
You have defined more than one clock definition for the same output.

"several .ARST definitions for the same output found"
You have defined more than one asynchronous reset definition for the
same output.

"several .APRST definitions for the same output found"
You have defined more than one asynchronous preset definition for the
same output.

"use of .CLK, .ARST, .APRST only allowed for registered outputs"
Well, use of .CLK, .ARST and .APRST is only allowed for registered
outputs :-)

1.57 Error Messages

IT.5.2 JEDEC File

"unexpected end of file"
The last thing in a JEDEC file should be either the file checksum or

a "«'".

"unknown command found"

There is a unknown command in your JEDEC file (see chapter JEDEC File for

possible commands). In most cases the reason for this error message
is a missing "«*’.

"bad format of number"
A dez. or hex. number is expected and found, but there are illegal
characters in it.
Example: Cla#3

"number expected after command"
After this command a dez. or hex. number is expected but not found.

GALer

45/ 61

"0 or 1 expected"
Fuses can be set to 0 or 1. Using another digit will cause this error.

"can’t find out type of GAL"
GALer can’t identify for which type of GAL (GAL16V8 or GAL20V8) this
JEDEC file is. But GALer must know this in order to program a GAL.

"QF multible found"
In the JEDEC file the command QF is found multiple. This is not
allowed.

"QP multible found"
In the JEDEC file the command QP is found multiple. This is not
allowed.

"ending ' x’ expected"
GALer expects a ’'x’ character.

"after 'C’ command no 'L’ command allowed"
After the fuse checksum no change of fuses (L command) is allowed.

"bad fuse checksum"
The fuse checksum is bad. The reason for this can be that you have
changed some state of fuses with a text editor.

"too many <STX> (= CTRL-B, 0x02) found"
The <STX> control character should be once at the beginning of the
JEDEC file.

"too many <ETX> (= CTRL-C, 0x03) found"
The <ETX> control character should be once at the end of the
JEDEC file.

"bad sequence of <STX>, <ETX>"

The first control character must be a <STX> then a <ETX> not vice versa.

"after file checksum end of file expected"
There is a character after a file checksum which is not a Space, TAB
or Carriage Return. This is not allowed.

"bad fuse address (L... too short)"
It’s easier to show an example:
L0010 1011«
L0013 0111«
Address 13 is defined twice.

GALer 46/ 61

"addresses skiped but no default value (F0/1x) defined"
It’s easier to show an example:
L0010 11~
L0015 01~
The fuses of the addresses 12, 13 and 14 are not defined and there
is no F command which would define the values of missing fuses.

"' %! expected"
"x" expected but not found (what else should I say here).

"QF... and last fuse address (L...) are not equal"
QF defines the number of fuses in this JEDEC file (GAL16V8: 2194,
GAL20V8: 2706). If the last fuse of a L command does not match
to the QF command, this error will occur.

"no values for the fuses found (no FO0/1, L...)"
In your JEDEC file are no fuses defined. Such a file is useless
and therefore rejected by GALer.

"only QF2194 x, QF2706 %, QF3274 %, QF5892 x allowed"
There is a QF... command which fits to no GAL which is supported by
GALer.

"too many fuses found"

In your JEDEC file are too many fuses defined.

"found several fuse checksumms"
In your JEDEC file are several fuse checksumms. This is not allowed.

"selected type of GAL fits not to JEDEC file"
You have selected a to-be-programmed-GAL which does not fit to
the JEDEC file.

1.58 Error Messages

II.5.3 Reassembler

"mode ACO = SYN = 0 is not supported"
In the JEDEC file the bits ACO and SYN are set to 0. This mode
is not supported by GALer.

"Pin xx: pin name defined twice"
A pin name is used for more than one pin.

GALer 47 / 61

"Pin xx: illegal character”
Legal characters are : digits, letters and the 7/’
Illegal characters are: Space, #, =*,

"Pin xx: no pin name found"
There is no name for the pin xx defined.

"Pin xx: VCC/GND at wrong pin"
VCC and GND must be the pin names for the VCC and GND pin of the GAL.

"Pin xx: illegal use of ' /’'"
Usage of the negation character: /pinname
Illegal: pinname/, /, //pinname etc.

"Pin xx: GND expected"
Pin 10 of GAL1l6V8 respectively pin 12 of GAL20V8 must be defined as GND.

"Pin xx: VCC expected"
Pin 20 of GAL16V8 respectively pin 24 of GAL20V8 must be defined as VCC.

"Pin xx: AR is not allowed as pin name"
When using a GAL22V10, AR is a keyword which is not allowed as pin name.

"Pin xx: SP is not allowed as pin name"
When using a GAL22V10, SP is a keyword which is not allowed as pin name.

1.59 Programming GALs

IITI.1 Programming GALs

The first question that arises is how can you program a GAL when all the
pins are already defined and no pins are free for the programming?

If you apply a voltage of 12.00 Volt up to 16.5 Volt (depends on GAL type
and on that whether the GAL should be read or programmed) to pin 2, then
the pin description changes, the GAL is then in the Edit mode.

In this section I’1ll explain how a GAL16V8 and GAL20V8 is read and
programmed. The reading/programming algorithm of the GAL22V10 and GAL20RA10
is similar to that of the GAL16V8 and GAL20V8 so I’'1ll explain only the
GAL16V8 and GAL20VS.

Here the pins in the Edit mode:

GAL16V8

VIL 1] [20 +5V
EDIT 2| 19 P,/V

GALer

48 /61

RAG1 3 |18
RAG2 4 | |17
RAG3 5] |16
RAG4 6| |15
RAG5 7] |14
SCLK 8| [13
SDIN 9| |12
GND 10 [11
GAL20VS8
VIL 1| |24
EDIT 2| 123
RAGL 31 |22
RAG2 4] |21
RAG3 5] |20
VIL 6| |19
VIL 7] 118
RAG4 8| |17
RAGS 9] |16
SCLK 10| |15
SDIN 11| |14
GND 12| 113

RAGO
VIL
VIL
VIL
VIL
VIL
SDOUT
/STR

+5V
VIL
P, /V
RAGO
VIL
VIL
VIL
VIL
VIL
SDOUT
VIL
/STR

Whether the GAL is to be read from or written to is determined by the level

of P,/V. A HIGH means write, a LOW read.

The to be read/written addresses are presented to pins RAGO-RAGS5. The

programming occurs as follows:

After giving the addresses to RAGO-RAG5, the to be written bits have to be
presented to SDIN (serially) and by clocking SCLK with a LOW-HIGH-transition
the data is transferred to an internal shift register. A LOW-pulse on the
/STR pin programs the addressed row. This repeats until the whole GAL is

programmed.

The reading of a GAL proceeds similarly: After presenting the addresses to
RAGO-RAG5 the bits of the corresponding address are put into the internal
shift register by clocking /STR with a LOW-pulse. By clocking SCLK with a
LOW-HIGH-clock transition all the various bits are sent out the SDOUT pin.
The bit width of an address determines the number of SCLK pulses required
to complete the programming or reading the address.

VIL means Input Voltage Low. These pins must be connected to ground

or LOW when the GAL is in the Edit mode.

GALs do have different algorithm codes. These codes determine the parameters
Edit mode voltage and STR pulse width. GALer supports the algorithm codes

0 to 4. The function
GAL-Info

of GALer returns the algorithm code of
the inserted GAL. This code is not very importent for you, but GALer needs

this code for reading and programming GALs.

GALer

49/ 61

\ READ | PROGRAM
,,,,,,,,,,,, o
Algorithm | Edit mode | STR pulse | Edit mode | STR pulse
| read voltage | | prog. voltage |
———————————— e T Tt TR
0 | 12 \ensuremath{\pm} 0,25 V | 5 us 15,75 \ensuremath{\pm} <
0,25 V | 80 \ensuremath{\pm} 5 ms
1 | 12 \ensuremath{\pm} 0,25 V | 5 us 15,75 \ensuremath{\pm} <
0,25 V | 80 \ensuremath{\pm} 5 ms
2 | 12 \ensuremath{\pm} 0,25 V | 5 us 16,50 \ensuremath{\pm} <
0,25 VvV | 10 \ensuremath{\pm} 1 ms
3 | 12 \ensuremath{\pm} 0,25 V | 5 us 14,50 \ensuremath{\pm} <+
0,25 V | 40 \ensuremath{\pm} 5 ms
4 | 12 \ensuremath{\pm} 0,25 V | 5 us 14,00 \ensuremath{\pm} <

0,25 V |100 \ensuremath{\pm} 5 ms

To erase a GAL you have to apply HIGH to P/V then pulse STR low for
100 ms and then apply LOW to P/V. After this the GAL is erased and ready

to be programmed again.

The internal organization of the GAL (addresses of the parts) looks as

follows:

GAL16V8, GALLl6VS8A,B:

Address
0-31 Fuse-Matrix

32 Signature

33-59 reserved space
60 Architecture-Control-Word ACW
61 Security bit
62 reserved
63 Bulk Erase

GAL20VS8, GAL20VSA,B:

Address
0-39 Fuse-Matrix
40 Signature
41-59 reserved space
60 Architecture-Control-Word ACW
61 Security bit
62 reserved

63 Bulk Erase

Width

64 Bit
64 Bit
64 Bit
82 Bit

Width

64 Bit
64 Bit
64 Bit
82 Bit

GALer 50/ 61

The Architecture-Control-Word has the following structure (82 Bit wide) :

GAL16V8:
Bits 0-31: 32 bit product term enable 0-31
Bits 32-35: 4 Bit XOR(n) for OLMC pins 19-16

Bit 36: ACO-Bit
Bits 37-44: 8 Bit ACl(n) for OLMC pins 19-12
Bit 45: SYN-Bit

Bits 46-49: 4 Bit XOR(n) for OLMC pins 15-12
Bits 50-81: 32 Bit product term enable 32-63

GAL16V8A,B:

Bits 0-3: 4 Bit XOR(n) for OLMC pins 19-16

Bit 4: ACO

Bit 5-8: 4 Bit ACl(n) for OLMC pins 19-16

Bit 9-72: 64 Bit product term enable PTO - PT63
Bit 73-76: 4 Bit ACl(n) for OLMC pins 15-12

Bit 77: SYN

Bit 78-81: 4 Bit XOR(n) for OLMC pins 15-12

GAL20V8:
Bits 0-31: 32 Bit product term enable 0-31
Bits 32-35: 4 Bit XOR(n) for OLMC pins 22-19

Bit 36: ACO-Bit
Bits 37-44: 8 Bit AC1l (n) fir OLMC pins 22-15
Bit 45: SYN-Bit

Bits 46-49: 4 Bit XOR(n) fir OLMC pins 18-15
Bits 50-81: 32 Bit product term enable 32-63

GAL20V8A,B:

Bits 0-3: 4 Bit XOR(n) for OLMC pins 22-19

Bit 4: ACO

Bit 5-8: 4 Bit ACl(n) for OLMC pins 22-19

Bit 9-72: 64 Bit product term enable PTO0 - PT63
Bit 73-76: 4 Bit AC1l(n) for OLMC pins 18-15

Bit 77: SYN

Bit 78-81: 4 Bit XOR(n) for OLMC pins 18-15

1.60 Circuit Description

IIT.2 Circuit Description
In the following section I’11 describe the functioning of my GAL-programming
device. I’1l refer to my circuit diagram, so if you haven’t ordered that,

you can skip this section.

The hardware is connected to the Amiga’s parallel port. The connected data

GALer

51/61

signals are D0-D4 and the BUSY-Line.

ICl, IC3, IC4 and IC5 are eight way "serial in/parallel out" shift registers.
The outputs of the shift-register from IC3, IC4 and IC5 are connected to the
Textool-Zero insertion force socket for the GAL. Therefore it is possible to
(besides VCC and GND) define each of the GAL’s pins with a level (HIGH or
LOW) .

The possible outputs of the GAL (pin 14 to 23) can be read through IC7 and
IC6. IC7 is an eight way "parallel in/serial out" shift register.

ICl is so to speak the switch centre, this IC selects IC3, 4 and 5 (OE).
Furthermore, this IC switches the programming voltages for the GAL (VCC,
Edit-voltage) on or off.

Since the ICs 1, 3, 4, 5, 7 can be individually accessed, a separate clock
line is provided for each IC. These clock lines are selected via IC2, a 1 out
of 4-decoder, by the parallel port’s data lines DO and D1.

D3 determines whether a read (low) or write (high) operation is to occur.
It must be ensured that D3 does not go low until the IC to be accessed is
selected through DO and D1. Otherwise an IC gets an unwanted clock-pulse
and at the next Strobe-pulse (D2) the wrong (once left shifted) data is
presented at the outputs.

The Strobe-pulse for the shift-register is derived from D2 . When D2 goes
high, the data in the shift registers is transferred to the output registers
of ICs 1, 3, 4, 5.

Through IC7, D2 can be made high (D2 = high), so that the data on Pins P1-P8
are transferred to the internal shift register and may be read through the
BUSY line by clocking the relevant clock-line.

D4 transfers the individual bits from the Amiga to the GAL-Burner.

Since Pins 2 and 4 of the Textool-socket may be supplied with the programming
voltage of up to 16.5 Volt, we have to protect IC4 with the diodes D2 and D3
against over voltage.

The programming voltage is derived from IC9, a switch mode voltage regulator.
This voltage can be precisely adjusted with the trimpots R40-R44.

The relay K1 connects the supply voltage of the GAL to pin 24 of the
Textool-Socket, Relay K2 connects the output Q7 from IC3 or +5V supply voltage
(according to the GAL type) to Pin 22 of the Textool-Socket. Both relays are
driven by ICL1.

The LED shows whether voltage is supplied to the Textool-Socket or not
(controlled by software). When the LED is on, a GAL may not be inserted or
removed from the socket.

Parallel-Port:
DO-D1: Selection of individual ICs by Clk

D2: Strobe-pulse for IC 1, 3, 4, 5
D3: write = low, read = high

GALer 52 /61

D4: Data line for "Write Bits"
BUSY: Data line for "Read Bits"
IC1:

Q1 make 16.5V (but don’t switch it!)

Q2 switch edit-current on pin 2 for GAL20VS
Q3 switch edit-current on pin 4 for GAL16VS
Q5 switch Vcc

Q6 OE for IC3, 4, 5

Q7 controlles LED on : high, low = off

Q8 not used

IC3:
Q01-08 pin 16-23 of the Textool-socket over R3-R8

IC4:
Q01-08 pin 1-8 of the Textool-socket

IC5:
Q01-03 pin 9-11 of the Textool-socket
Q4 pin 13 of the Textool-socket

05-06 pins 14, 15 of the Textool-socket over R9, R10

IC6

a read level at pin 13 of the Textool-socket
b read buffer of IC7

c read level at pin 23 of the Textool-socket
IC7:

P1-P8 read level at pin 14-21 of the Textool-socket

1.61 Construction

ITII.3 Construction

The parts list can be found in the appendix. If you want to save the cost

of the Textool-socket, you can also use a normal 24 pin socket, but since the
two pin rows are too far apart, you will have to carefully cut the socket
along it’s length, and set them to the correct distance. Or you might like

to use "MOLEX" pins instead. For IC-sockets you should only use precision
sockets. The 25 Pin Sub-D-socket (A1000) or the Sub-D-plug (other Amiga
models) is connected as follows:

DO = pin 2
D1 = pin 3
D2 = pin 4
D3 = pin 5
D4 = pin 6
BUSY = pin 11
GND : Al1000 pin 14
A500, A2000, A3000, ... pin 17

The supply voltage (+5V and ground (GND) you will have to get from the

GALer 53 /61

Amiga’s Expansion-Port or from a regulated +5V power supply. The GAL-Burner
has a maximum current consumption of about 220 mA.

The main difficulty in the construction of the GAL-burner is probably the
printed circuit board (PCB). Most likely a double sided through plated PCB
is required, so probably the best solution is to use a piece of veroboard,
and connect the relevant pins with fine hookup wire, or wire wrap wire. If
you want the whole thing to look impressive, you can use wiring guides.
The wires can be conducted via these guides, and wont go here there an
everywhere. I have constructed my GAL-Burner and endless other projects
in this way.

If you are able to make a PCB, you can find the PostScript- or

Gerber-Files in the directory "Layout". This PCB-layout is copyright by
Thorsten Elle. Thank you Thorsten for giving me the permission to

distribute your layout together with GALer.

If you want to use the PCB-layout, please not this:

On the PCB the resistors R28 to R32 of the circuit diagram are replaced

by a resistor-array (8 x= 1.8kOhm). Futhermore there is for each IC a

capacitor for anti-interferencing. These capacitors are C5 to Cl4 (each 100nF).

When you have built the circuit and you have connected it to the Amiga,
and the Amiga DIDN’T blow up, you can run the test program "GALerTest".
The program set various voltage levels on the Textool-socket, which you
can check with a VOM. The programming voltages are adjusted with R40-R44.
For this you can use "GALerTest".

DON’T FORGET: adjust the programming voltage with the trimpots, otherwise
the GAL-burner will NOT FUNCTION !!!!
(start the "GALerTest" and click through to the
relevant test points).

If the GAL-Burner works just as the test program demands, then you can try
burning a test GAL and test it with the GAL-Checker function of GALer. If
this all works then there are no faults in the hardware. GALs of the type
GAL16V8 must be inserted in the Textool-socket, so that pin 1 of the GAL

lines up with pin 3 of the socket. With GALs of the type GAL20V8 pin 1 of
the GAL must line up with pin 1 of the socket.

Here is the pin layout of the used transistors (bottom view) :

BC 237 and BC 327

Well that’s about it. Chau and have fun with the cute GALs.

GALer

54 /61

1.62 Keywords of the Source File

Keywords of the Source File

GAL16V8
GAL20V8
GAL22V10
GAL20RA10

NC
GND
VCC

~ * +

DESCRIPTION

1.63 List of Parts

List of Parts:

ICs:

ICl, IC3, IC4, IC5
IC2
IC6
IC7
IC8
IC9
IC10

Diodes:

D1-D4
LED

Transistors:

T2, T4, T5
T1, T3

designates the GAL type

not connected (unused) pin

GROUND (=LOW)

+5V (=HIGH)

output pin is tristate output
tristate enable through product term
output pin is register output

output pin is given an equivalence
OR

AND

NOT

indicates the end of the Boolean equations

4094
4555
4503
4021
74LS06
TL 497
7415145

e e e e
XXX X X X X

4 x 1N4148
1 x rot, 3 mm

3 x BC237B
2 X BC327

GALer

55/ 61

Resistors (5%, 1/4 Watt):

R1, R2
R3-13,
R28-32
R14
R15
R34
R18
R27
R33
R40-44

, R35-39 :
R19-26 1 10

1,8

27
220
4,7
47
22

I N N e el e R IR
XXX X X X X X X X

(there are no R16, R17)

KOhm
KOhm
KOhm
Ohm
KOhm
Ohm
Ohm
Ohm
KOhm
KOhm

trimpots

e.g. reed-relays,

1 x single pole double throw

uH,

pF
uk,
nk
ukF',

Relays:

K1, K2 2 x relays,
Coil:

Ll 1 x 100
Capacitors:

C1l 1 x 100

C2 1 x 4,7

C3 1 x 100

c4 1 x 220
Sundries:

IC-Sockets

7 x
3 x
1 x

u = mikro

Please note thi
resistor-array
capacitors C5 t

the circuit diagram,

16 pin
14 pin

Textool-Socket 24 pin, narrow! (.

a universal type

miniature fixed

tantalum

25V

3 row spacing) or use

25 pin female Sub-D connector for Amiga 1000
or 25 pin male Sub-D connector for all other Amiga types

s: If you use the PCB-layout,

rep

lace R28 to R32 by a

8 % 1.8kOhm. Furthermore you can add ten anti-interference
o Cl4 (each 100nF). These capacitors are not drawn in

but you can see them in the component mounting diagram.

GALer 56 /61

1.64 Further Reading

Further Reading
1) GALs - Programmierbare Logikbausteine in Theorie und Praxis
Bitterle

Franzis-Verlag

2) Programmable Logic Manual - GAL Products
SGS—-Thomson

3) GAL Handbook

Lattice
1.65 Index
A
ACO
ACl
ACW
Format
Reading

AND-Matrix

AR

Architecture Control Word
Assembler

Asynchronous Preset

Asynchronous Reset
B

Blank Test

Bulk Erase
C

Chip Diagramm
Circuit Description

Comment

GALer 57 /61

Compare
Configuration, Save
Control Characters

Copy
D

DESCRIPTION
E

Edit Mode
Edit Voltage
Editor, Call
Editor, Selection
Erase
Error Messages
Example

GAl6VS8

GAL22V10

GAL20RA10
F

Feed Back
File Checksum
Fuse Checksum

Fuse File

GAL
GAL-Assembler
GAL-Checker
GAL-Info
GAL-Types
GAL16V8

Intern Structure

OLMC

GALer

58 /61

Pin Designation
Modes
Security-Bit

Signature

GAL20RA10

Asynchronous Preset

Asynchronous Reset

Intern Structure
OLMC

Pin Designation
Preload

Tristate Control

GAL20V8

Intern Structure

OLMC

Pin Designation
Modes

Security-Bit

Signature

GAL22V10

Intern Structure
OLMC

Pin Designation
Security-Bit

Signature

GALerTest

H

Hardware

Hardware—-Version

GALer

59 /61

Help

History
I

Installation
J

JEDEC File
Generate

Parameter
K

Keywords
M

Matrix, AND-

Mode
N

Negation
@)

OLMC

Optimizer

Output, Combinational

Output Cell,
P

P,/V

PCB

Pin Description File

Pin Declaration

Pin Names

Clear

Show

Preload

Printed Circuit Board

Product Term

Program

Configurable

GALer

60 /61

How to Do
Programming-Algorithm

PT
Q

Quine-McCluskey

Quit
R

RAGO-RAGS
Reassembler

Register Output
S

SO
S1
SCLK
SDIN
SDOUT
Security-Fuse
Set
Test
Shareware
Signature
Read
Source File
SP
SYN

Synchronous Preset
T

Testing
Tristate Output

Type—Requester
\

GALer 61 /61

VIL
W

Write Access
X

XOR

	GALer
	GALer
	What is GALer
	Shareware
	Important!!!
	History
	Thanks
	System Requirements
	What are GALs?
	The Intern Structure of GALs
	The GAL16V8 and GAL20V8
	The GAL22V10
	The GAL20RA10
	The Software
	Source File
	Installation
	Allgemeines zur Bedienung
	Menus
	Project
	Project
	Project
	Project
	GAL-Type
	GAL-Type
	GAL
	GAL
	GAL
	GAL
	GAL
	GAL
	GAL
	GAL
	GAL-Assembler
	GAL-Disassembler
	GAL-Disassembler
	GAL-Disassembler
	GAL-Disassembler
	GAL-Disassembler
	GAL-Disassembler
	Tools
	Tools
	Tools
	Tools
	Tools
	Tools
	Tools
	Assembler
	How to Program GALs
	How to Test Programmed GALs
	Optimizer
	JEDEC File
	Examples
	GAL16V8
	GAL22V10
	GAL20RA10
	Error Messages
	Error Messages
	Error Messages
	Error Messages
	Programming GALs
	Circuit Description
	Construction
	Keywords of the Source File
	List of Parts
	Further Reading
	Index

